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Abstract: Forest composition in the eastern United States (US) has been shifting from an oak–hickory
to maple–beech assemblage, but whether there are species-specific differences within these oak–
hickory stands in their responses and recovery from drought remains unclear. Here, we examined
drought responses and resilience derived from radial growth of 485 co-occurring Carya ovata and
Quercus alba individual trees at 15 forests in the eastern US. Water availability over the growing season
(May to August) of the current year controls growth variability of both C. ovata and Q. alba. Drought
that occurred in June caused the greatest growth reduction for both species while interspecific
differences inof drought-induced growth reduction was found in July, where Q. alba experienced
stronger reduction than C. ovata. Both species are resilient to early growing season drought, but late
growing season drought caused larger drought legacy effects for Q. alba. The increasing drought
frequency and intensity will have a more prominent impact in oak–hickory stands in the eastern US.
The species composition of a forest along with species-specific responses and recovery is likely to be
a critical control on forest productivity and species abundance.

Keywords: species-specific response; species composition; drought sensitivity; drought resilience;
drought timing

1. Introduction

Forests provide fundamental and irreplaceable ecosystem services, but recent anthro-
pogenic climate change has disrupted global hydrological patterns, carbon cycles, and
even microclimatic conditions offered by the forests [1,2]. A warmer climate increases
the vapor pressure deficit and exacerbates drought stress on forest ecosystems [3]. Heat-
induced drought causes substantial reduction in productivity and even causes embolism
in xylem tissue, which triggers widespread tree mortality when xylem cavitation cannot
be reversed [4–7]. These events will weaken carbon sequestration provided by the forests
and even shift the forests to a carbon source temporarily [5]. It is therefore imperative to
understand the consequences of climate extremes on forest productivity and resilience.

Anthropogenic disturbances not only disrupt important ecosystem services but also
alter species distribution [8,9] and can change a community’s composition [10]. In the
eastern United States (US), the composition of the forests was initially dominated by
oak–hickory stands but the shade-tolerant maple–beech assemblages have become more
abundant in recent decades [11–13]. Multiple and interactive hypotheses were postulated
for this phenomenon, including fire suppression, climate change with wetter conditions,
and land-use change with decreasing forest cover, etc. [12]. However, less frequent fire
occurrence appears to have contributed to diminishing oak abundance the most [14]. In
addition to anthropogenic fire suppression, the demographic shift also contributed to less
frequent fire because the maple leaf litter is less flammable, which altered the forests with a
cooler and moister microclimate and generated a positive feedback loop that favored the
establishment of maples but suppressed the regeneration of other fire-tolerant species, such
as oaks and hickory [11]. In the context of increasing drought stress in the eastern US, one of
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the potential consequences of such a compositional shift from oaks to maples is an alteration
of drought impacts on forest productivity, where drought could cause stronger growth
reduction of maple-dominant stands, especially when drought occurs in the later growing
season [15]. However, the water demand (i.e., potential evapotranspiration) controls oak
species dominance differentially; the higher potential evapotranspiration favors dominance
of white oak (Quercus alba) over red oak (Quercus rubra) [14].

Although maples (Acer) are becoming more dominant, while oaks (Quercus) are dimin-
ishing, hickory (Carya) still occupy a substantial portion (up to 30%) in some forest stands
of the eastern US [13]. Oaks and hickory are ring-porous species [16]; therefore, both genera
are assumed to have similar responses and sensitivity to climate variability due to the
similarity of wood anatomical traits. However, this assumption remains to be tested in the
context of regional-scaled forest demographic change with increasing drought frequency
and intensity. Annual tree radial growth contains valuable long-term information about
species-specific tree growth responses and sensitivity to major climate variables, including
temperature and moisture variability [17–20]. In order to better compare interspecific
responses, sampling co-occurring species is preferred to control confounding variables
influencing tree growth responses, such as site characteristics [15].

Here, we ask whether (1) the co-occurring Carya ovata and Quercus alba demonstrate a
similar climate–growth relationship, particularly to water variability; (2) C. ovata and Q. alba
has a similar drought sensitivity in terms of the magnitude in growth reduction; (3) C. ovata
and Q. alba demonstrate a similar resilience to drought and therefore, the capacity to restore
their growth to pre-drought level, because of their similar ecological traits and niches.

2. Materials and Methods
2.1. Study Area and Species

We sampled co-occurring Carya ovata and Quercus alba at 15 sites across Iowa, Illinois,
Indiana, Missouri, and Ohio in the eastern US (Figure 1). The only exception is that the
Quercus macrocarpa (bur oak) was sampled at Meltzer Woods (MW), Indiana instead of
Quercus alba but both Q. macrocarpa and Q. alba are under the white oak group with similar
responses to climate [15,21,22]. For simplicity, Q. alba will be used to represent Q. macrocarpa
in the following sections. We sampled 6–43 trees (12–85 increment cores) per species at
each site (Table 1). In total, we sampled 933 cores from 485 individual trees at these 15 sites
for the following analyses.
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Table 1. Summary of co-occurring Carya ovata (CYOV), Quercus alba (QUAL), and Quercus macrocarpa
(QUMA) at 15 sites.

Site, State (Abbreviation) Latitude,
Longitude Species Tree (Core) Master Series

(Year)
Inter-Series
Correlation

Lacey Keosauqua, IA (LK) 40.72, −91.98
CYOV 10 (20) 165 (1855–2019) 0.564
QUAL 24 (47) 305 (1715–2019) 0.655

Palisades-Kepler IA (PK) 41.91, −91.51
CYOV 10 (19) 160 (1860–2019) 0.637
QUAL 28 (56) 249 (1770–2018) 0.687

Fox Ridge, IL (FR) 39.40, −88.16
CYOV 10 (19) 255 (1762–2016) 0.515
QUAL 33 (68) 341 (1674–2014) 0.682

Kickapoo, IL (KP) 40.14, −87.75
CYOV 10 (19) 172 (1845–2016) 0.578
QUAL 24 (43) 345 (1670–2014) 0.668

Lincoln’s New Salem, IL (NS) 39.98, −89.85
CYOV 10 (19) 170 (1847–2016) 0.532
QUAL 43 (84) 344 (1671–2014) 0.719

Donaldson Woods, IN (DW) 38.73, −86.42
CYOV 9 (21) 338 (1676–2013) 0.618
QUAL 13 (27) 289 (1725–2013) 0.615

Hemmer Woods, IN (HW) 38.23, −87.37
CYOV 10 (20) 264 (1753–2016) 0.634
QUAL 16 (31) 317 (1700–2016) 0.659

Lilly Dickey, IN (LD) 39.24, −86.22
CYOV 9 (18) 138 (2876–2013) 0.625
QUAL 10 (20) 151 (1863–2013) 0.717

Meltzer Woods, IN (MW) 39.51, −85.67
CYOV 10 (19) 347 (1670–2016) 0.590
QUMA 9 (17) 190 (1827–2016) 0.610

Morgan-Monroe, IN (MM) 39.32, −86.41
CYOV 10 (20) 125 (1891–2015) 0.597
QUAL 11 (21) 109 (1907–2015) 0.575

Pioneer Mothers, IN (PM) 38.54, −86.45
CYOV 6 (12) 127 (1886–2012) 0.577
QUAL 22 (30) 195 (1817–2011) 0.577

Babler State Park, MO (BS) 38.62, −90.69
CYOV 15 (26) 180 (1837–2016) 0.607
QUAL 43 (85) 375 (1641–2015) 0.632

Missouri flux tower, MO (MO) 38.74, −92.20
CYOV 10 (20) 109 (1908–2016) 0.520
QUAL 10 (20) 109 (1907–2015) 0.681

Goll Woods, OH (GW) 41.55, −84.36
CYOV 9 (17) 277 (1739–2015) 0.525
QUAL 10 (20) 257 (1760–2016) 0.626

Johnson Woods, OH (JW) 40.88, −81.75
CYOV 10 (19) 354 (1663–2016) 0.563
QUAL 41 (76) 387 (1626–2012) 0.662

2.2. Field Sampling and Chronology Development

The tree cores were sampled at breast height with 5.1 mm diameter increment borers.
All samples were air-dried, mounted, and polished progressively with sandpapers. The
tree cores were then measured and crossdated under a microscope at 0.001 mm precision
with a Velmex measuring system (Velmex Inc., Bloomfield, NY, USA). The accuracy of
crossdating and measurement was statistically checked by the COFECHA program [23]. We
standardized these tree series with a two-third smoothing spline to remove low frequency
signals associated with biological growth trends and forest dynamics and then used a
bi-weighted average to compute the mean C. ovata and Q. alba chronology at each site by
the dplR package in R [15,24,25].

2.3. Climate Data

Given tree radial growth is responsive to water variability in the study region [15,16,26,27],
we only considered climatic water balance and the Standardized Precipitation-Evapotranspiration
Index (SPEI, version 2.6) at 0.5◦ spatial resolution for our analyses. Climatic water balance
is the difference between water supply (precipitation) and water demand (potential evap-



Forests 2022, 13, 389 4 of 11

otranspiration, PET), which were derived from CRU TS version 4.05 [28]. Monthly PET
was calculated by monthly maximum temperature, minimum temperature, and monthly
precipitation using the Hargreaves method provided by SPEI package in R [29]. The SPEI
is a standardized measure of the difference between water supply (precipitation) and water
demand (PET) [30] for analyzing the potential climate–growth relationship and determin-
ing drought severity across study sites. The SPEI time series was extracted from the closest
grid of the study site coordinates. We gathered both 1-month SPEI for individual month
analyses and 3-month integrations of SPEI for seasonal analyses. We defined drought as
being an SPEI less than or equal to −1.5 (≤−1.5), while non-drought as being greater than
−1.5 (>−1.5) at each study site. For the sites within 0.5◦ spatial resolution (e.g., MM-LD
and DW-PM, Figure 1), both C. ovata and Q. alba shared similar growth variability with a
correlation coefficient ranging from 0.31 to 0.72.

2.4. Methods

We used Pearson’s correlation to explore the relationship between climatic water
balance, SPEI, and standardized radial growth over the common period (1908–2011) of all
15 sites. As tree growth mainly responds to water variability of the current growing season
in the eastern US [15,16,26,27], correlation was calculated with 1-month SPEI for individual
months from April to September as well as with 3-month SPEI of the current growing
season (i.e., June–July-August). We also employed a linear mixed model to examine the
relationship between climate water balance and standardized tree radial growth across
15 sites over the common period (1908–2011). Five models were computed for the most
responsive individual months inferred from the correlation analysis (i.e., May, June, July,
August, and JJA) by the lme4 package in R [31] with the following equation:

SRW = A+ β(CWB)+γ(Species × CWB)+ ε(Site)+ ε(Species)+ ε(Site × Species) (1)

where SRW is the standardized ring width, A is the intercept, β is the slope of the fixed
effect (climatic water balance of each month), γ is the slope of interaction terms between
climatic water balance and the species, and ε are the random effects, including the number
of sites (n = 15), species (n = 2), and sites crossed with species (n = 30).

We calculated the percentage of tree growth reduction during drought for both species.
The percentage of tree growth reduction is defined as the differences between averaged
standardized ring width (SRW) during drought years and non-drought years compared
to the SRW during non-drought years [15]. We also used resilience index to quantify the
species’ ability to restore pre-drought growth level for drought that occurred at different
months of the growing season, which is the ratio between the SRW 4 years after drought
(SRWpost1–4) and the SRW 4 years before the drought (SRWpre1–4) [32]. We only considered
single drought years instead of consecutive years of drought events to avoid potential
impacts of consecutive drought events influencing the resilience calculation. For sites that
experienced more than one drought event, we averaged the resilience index of all drought
events to represent the resilience of the species at a given site. Resilience above 1 indicates
that the species is fully recovered from drought and vice versa. We used one sample t-tests
to determine if the mean percentage of growth reduction and the mean resilience were
different from zero and one, respectively, for both C. ovata and Q. alba. We also used two
sample t-tests to determine if there were interspecific differences in the mean percentage of
growth reduction and the mean resilience.

3. Results
3.1. Climate–Growth Relationship

The inter-series correlations of Carya ovata and Quercus alba chronologies ranged from
0.515 to 0.637 and 0.575 to 0.719, respectively (Table 1), suggesting that the tree series
were statistically crossdated and shared a common signal at each site. C. ovata and Q. alba
demonstrated positive responses to both climatic water balance and SPEI over the current
growing season of the common period 1908–2011, indicating that the radial growth of
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both species is sensitive to water availability (Figure 2). The radial growth of both species
starts as early as May with the mean correlation coefficient between climatic water balance
(SPEI) and radial growth being 0.12 (0.14) for C. ovata and 0.26 (0.28) for Q. alba. The water
availability in June is the most influential for the growth of both species with the mean
correlation coefficients of 0.36 (0.37) and 0.50 (0.51) for C. ovata and Q. alba, respectively,
at 15 study sites (p < 0.05). Both C. ovata and Q. alba also demonstrated a strong positive
response to the seasonal June–July-August (JJA) climatic water balance (SPEI) with a
correlation coefficient of 0.34 (0.35) and 0.51 (0.52), respectively (p < 0.05).
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The linear mixed models also demonstrated similar results with the correlation analy-
ses that water availability in June had the strongest control on the radial growth of both
C. ovata and Q. alba. The growth of C. ovata and Q. alba were increased by 0.123 and 0.139,
respectively, when climatic water balance was increased by 100mm, but the growth rate of
both species in June was not significantly different (Table 2). However, the water availability
in July and JJA caused a significant difference in tree growth between C. ovata and Q. alba,
where the growth rate was 0.063 and 0.092 for C. ovata and Q. alba, respectively, in July
(p < 0.01), and 0.18 and 0.216 for C. ovata and Q. alba, respectively, in JJA (p < 0.05), for every
100mm increase of climate water balance (Table 2).

Table 2. The linear mixed models showing the fixed effect estimates, standard error (SE), and degree
of freedom (df) when analyzing the relationship between monthly climatic water balance (CWB) and
the standardized growth of co-occurring Carya ovata and Quercus alba (QUAL) over 1908–2011 at
15 sites.

Month Variables Estimate ± SE df t-Value p-Value

May
Intercept 0.997 ± 0.01 1 92.175 0.007

CWB 0.00038 ± 0.00007 2333 5.496 <0.001
CWB: QUAL 0.00023 ± 0.0001 1290 2.322 0.02

June
Intercept 1.061 ± 0.013 1 84.55 0.008

CWB 0.00123 ± 0.00007 728.6 17.104 <0.001
CWB: QUAL 0.00016 ± 0.0001 205.6 1.564 0.12

July
Intercept 1.043 ± 0.019 1 53.548 0.0117

CWB 0.00063 ± 0.00007 1206 8.762 <0.001
CWB: QUAL 0.00029 ± 0.0001 405.1 2.894 0.004

August
Intercept 1.005 ± 0.006 1 170.3 0.0037

CWB 0.00042 ± 0.00008 6.871 5.469 0.001
CWB: QUAL −0.00013 ± 0.00009 0.7 -1.473 0.457

JJA
Intercept 1.118 ± 0.021 1 52.6 0.01

CWB 0.0018 ± 0.0001 624.7 16.1 <0.001
CWB: QUAL 0.00036 ± 0.0002 167.2 2.341 0.02

3.2. Drought-Induced Reduction

Drought caused a significant growth reduction for both species when tree growth
took place from May to August (t14 = −2.8 to −13.6, p < 0.05, Figure 3). Although C. ovata
had a lower correlation to interannual drought variability compared to Q. alba (Figure 2),
both species demonstrated a similar degree of growth reduction during drought over
the growing season from May to August (Figure 3). In particular, the degree of growth
reduction was the most prominent for both species when drought happened in June with a
mean reduction of 19% and 22% for C. ovata and Q. alba, respectively. However, drought
happening in July caused an interspecific difference in mean growth reduction, where
Q. alba has 6% more reduction than C. ovata (t28 = 2.8, p < 0.01). The seasonal JJA drought
reduced the radial growth by 17% and 19% on average for C. ovata and Q. alba, respectively,
but did not induce an interspecific difference.

3.3. Resilience to Drought Stress

The resilience index quantifies the ability of the species recovering from drought
compared to pre-drought level. In general, we found both Carya ovata and Quercus alba
were more resilient (mean resilience above 1) when drought happened in the early growing
season (i.e., in May and June), while both species were less resilient (mean resilience below
1) when drought occurred in the late growing season (i.e., in July and August) (Figure 4).
The mean resilience of C. ovata and Q. alba were 1.04 and 1.03, respectively, for drought
happening in May, and 1.06 and 1.03, respectively, for drought happening in June, which
are all significantly above 1.0 (t14 = 2.2 to 2.8, p < 0.05). The mean resilience of C. ovata
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and Q. alba were 0.99 and 0.97, respectively, for drought happening in July, and 0.99 and
0.95, respectively, for drought happening in August. The mean resilience of Q. alba was
significantly less than 1 for the August drought (t14 = −2.3, p < 0.05). For seasonal drought
that occurred during June-July−August (JJA), the mean resilience was 1.0 and 0.96 for
C. ovata and Q. alba, respectively, and the resilience index for Q. alba was significantly less
than 1 (t14 = −2.5, p < 0.05). Meanwhile, the higher mean resilience of C. ovata than that of
Q. alba indicated a mild interspecific difference in drought resilience during the JJA seasonal
drought (t28 = 1.9, p = 0.07).
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4. Discussion

The correlation analysis and linear mixed models demonstrated that water availability
is the main determinant on the growth of both Carya ovata and Quercus alba over the growing
season (i.e., June−July−August, JJA), which is consistent with previous studies [16,33].
Among the growing season, both species are the most responsive to water variability in
June and the growth of Q. alba better followed the water variability than that of C. ovata with
higher mean correlation coefficient across 15 sites (Figure 2). However, higher correlations
did not correspond to higher sensitivity during drought in terms of growth reduction for
Q. alba. Indeed, both C. ovata and Q. alba experienced a similar degree of growth reduction
in June and during JJA. The interspecific disparity in drought sensitivity only occurred
for drought happening in July where Q. alba demonstrated a greater averaged growth
reduction than C. ovata (Figure 3). Although drought in May and June caused greater
growth reductions for both C. ovata and Q. alba than drought in July and August, the degree
of reduction did not hinder how the species recovered to pre-drought growth. In particular,
both species were more resilient to the early growing season drought and less resilient to
the later growing season drought, while C. ovata seems to have higher resilience to seasonal
drought than Q. alba (Figure 4). Here, we discuss how hydraulic trait and drought timing
relate to the species-specific drought sensitivity and resilience.

4.1. Hydraulic Trait and Growth Reduction

We found that drought has an immediate effect on tree growth with the greatest
reduction for both C. ovata and Q. alba when drought took place in June. During periods
of limited water availability, tree growth is reduced due to a decline in cell formation [34].
Further, carbon uptake is reduced as well during drought due to stomatal closure that
limits water loss [35]. While growth and photosynthesis are not always coupled [34,36],
both growth and photosynthesis are negatively impacted during periods of drought. Thus,
during drought, stomatal closure and declines in growth combine to further reduce carbon
uptake from the atmosphere [5,35]. The degree of stomatal closure varies by species and
could lead to species-specific drought sensitivity. The spectrum of isohydric to anisohydric
hydraulic behavior can be inferred from leaf water potential measurement because more
isohydric species tend to conserve water (higher leaf water potential) with stricter stomatal
control during drought but also limit carbon assimilation, while more anisohydric species
have a looser stomatal control to maintain more steady transpiration (lower leaf water
potential) and carbon assimilation when drought occurs [35,37,38]. C. ovata and Q. alba
are considered anisohydric species compared to isohydric Acer saccharum in the eastern
US [35,39]. C. ovata was reported to have lower leaf water potentials over the growing
season as well as greater decrease between predawn and middle leaf water potentials than
Q. alba in July [39]. This behavior suggested C. ovata is even more anisohydric than Q. alba
in July, which may explain why Q. alba has a greater growth reduction in July compared to
C. ovata while C. ovata did not respond severely to July drought.

4.2. Later Growing Season Drought Hindering Tree Growth Recovery

Late season drought during July and August could induce lower mean resilience
(below 1) than early season drought for both C. ovata and Q. alba in Figure 4. Lower re-
silience is equivalent to drought legacy—a prolonged tree growth recovery due to drought
disturbance [40]. Drought timing could determine the impacts of drought on tree growth
recovery [41]. Trees experiencing early season drought may have more time to perform
photosynthesis during the later growing season to compensate the growth reduction by
storing nonstructural carbohydrates for tree growth for the following years [40]. Trees
experiencing late season drought, however, may not have sufficient time to store photo-
synthetic products for preparing and initiating tree growth in the following years [40].
In addition, Q. alba is found to be more vulnerable to hydraulic damage with xylem em-
bolism during drought [42]. Repairing xylem tissue may also cost carbohydrate reserve
and lead to a stronger recovery delay for Q. alba [35,43,44]. Indeed, other external factors,
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such as late frost and pest outbreaks, could impair radial growth [45,46], but frost is not
common throughout the region and all tree individuals sampled appeared healthy at the
time of sampling.

4.3. Impacts of Drought Timing and Duration

Drought sensitivity and recovery could vary with the timing and duration of drought,
with the greatest reduction during early season drought, while drought sensitivity could
also be species-specific where interspecific differences in drought sensitivity were found in
July [15,47,48]. Species composition in the forest ecosystem of the eastern US is shifting;
therefore, the impacts of drought on forest productivity and carbon storage will depend on
species-specific drought sensitivity and the timing of when future drought will occur. Early
season drought is the most detrimental to tree growth in the current year while late season
drought could be more detrimental to tree growth in the following year [47]. As vapor
pressure deficit over the summer is projected to increase and intensify the drought stress,
the oak-dominated stands may experience more reduction in primary productivity, and oak
may become even less abundant in oak–hickory stands under the scenario of shifting future
drought regimes due to the greater sensitivity of Q. alba to later season droughts [49,50].

5. Conclusions

Both C. ovata and Q. alba have ring-porous xylem architecture and adopt anisohydric
behavior to cope with drought stress; thus, these species are assumed to have similar growth
performance and responses to drought. Here, we demonstrated that drought timing could
influence species sensitivity and recovery ability, probably due to interspecific differences
in hydraulic traits and vulnerability to drought. The influence of early season drought on
growth reduction and resilience is similar for both species but interspecific differences in
drought sensitivity and resilience are more prominent in the later growing season drought.
These findings provided evidence of species-specific drought responses even though two
distinct species share similar traits. With anthropogenic climate change and alteration of
the forest ecosystems, species composition of the forests with species-specific responses to
the changing climate could have a substantial influence on the carbon and water cycles.
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