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Abstract  Minimum temperatures have remarkable impacts 
on tree growth at high-elevation sites on the Tibetan Pla-
teau, but the shortage of long-term and high-resolution 
paleoclimate records inhibits understanding of recent mini-
mum temperature anomalies. In this study, a warm season 
(April–September) reconstruction is presented for the past 
467 years (1550–2016) based on Sabina tibetica ring-width 
chronology on the Lianbaoyeze Mountain of the central 
eastern Tibetan Plateau. Eight warm periods and eight cold 
periods were identified. Long-term minimum temperature 
variations revealed a high degree of coherence with nearby 
reconstructions. Spatial correlations between our recon-
struction and global sea surface temperatures suggest that 
warm season minimum temperature anomalies in the cen-
tral eastern Tibetan Plateau were strongly influenced by 
large-scale ocean atmospheric circulations, such as the El 

Niño-Southern Oscillation and the Atlantic Multidecadal 
Oscillation.
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Introduction

Tree growth is a complex biological process, whereas cli-
mate is a key determinant of tree adaptation and productiv-
ity. IPCC (2021) reported that global surface temperatures 
during the past decade (2011–2020) were 1.1 °C above those 
during 1850–1900. Among all the factors that affect tree 
growth, temperature is the most critical in high latitudes 
and alpine regions. As a result, tree-ring records of high 
elevation sites often bear important imprints of temperature 
variabilities.

Tree-ring parameters provide an opportunity to evalu-
ate past climate changes when instrument observations 
are unavailable (Davi et al. 2015; Asad et al. 2016; Zhang 
2015; Zhang et al. 2019, 2020). As an annual climate proxy, 
tree rings have been widely used in climate reconstructions 
at local to global scales (Esper et al. 2002; Mann et al. 2008; 
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Cook et al. 2010; Gou et al. 2013; Fang et al. 2014; Li et al. 
2014a; Wilson et al. 2016; Sun et al. 2018; Chen et al. 2019). 
Dendroclimatological research has developed rapidly in 
China in recent decades (Shao et al. 2010; Yang et al. 2014; 
Zhang et al. 2015; Liu et al. 2017a; Yang et al. 2017; Fan 
et al. 2019; Yu and Liu 2020; Jiao et al. 2022). Numerous 
studies have reconstructed temperature, precipitation, mois-
ture, and streamflow across China (Shao et al. 2005; Liang 
et al. 2009; Liu et al. 2009, 2017b; Bao et al. 2012; Peng and 
Liu 2013; Zhang et al. 2014a; Chen et al. 2016; Fang et al. 
2017; Li et al. 2017; Shi et al. 2017; Wang et al. 2019). In 
particular, tree-ring studies in the eastern Tibetan Plateau 
started in the 1990s (Shao and Fan 1999), but most were 
concerned with the reconstruction of winter or annual tem-
peratures (Wu et al. 2005; Song et al. 2007; Yu et al. 2012; 
Li et al. 2014b, 2015a, 2015b; Xiao et al. 2015; Yin et al. 
2015; Zhu et al. 2016) or the variability of drought (Deng 
et al. 2016, 2017). Growing season temperature reconstruc-
tions are relatively rare in the eastern Tibetan Plateau, and 
there is a need to expand the tree-ring coverage, especially 
for the growing season minimum temperatures.

The central eastern Tibetan Plateau has an average alti-
tude of 4000 m a.s.l. It is characterized by complex topog-
raphy, thin air with low oxygen levels, and high annual solar 
radiation (Hu and Zeng 2003). Abundant sunshine makes 

up, to some extent, for heat loss at high altitudes and cold 
weather. As a result, trees can grow to a higher elevation, 
which makes minimum temperatures a key limiting factor 
on tree growth.

The objective of this study was to reconstruct growing 
season minimum temperatures based on tree-ring analysis of 
Sabina tibetica Kom. collected from the Lianbaoyeze Moun-
tain in central eastern Tibetan Plateau and to investigate the 
long-term variations of minimum temperatures and their 
potential climate driving factors.

Materials and methods

Study region

The Lianbaoyeze Mountain (33.08° N, 101.18° E) belongs 
to the southern branch of the Bayan Har Mountains and is 
located in the northwest of Aba County of Sichuan Prov-
ince, bordering Jiuzhi County and Banma County of Qing-
hai Province. The average elevation is over 4000 m and the 
highest peak is 5141 m a.s.l. Based on nearby meteorological 
records from the China Meteorological Data Service Cen-
tre (http://​data.​cma.​cn/), the annual average temperature 
is 3.3 °C, annual total rainfall 712 mm, and annual total 

Fig. 1   Study area showing the 
sampling site (star) and nearby 
meteorological stations (circles)

http://data.cma.cn/
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sunshine 2383 h. S. tibetica is mainly distributed on sunny 
slopes from 2800 to 4500 m a.s.l. (Fig. 1).

Tree‑ring data

A total of 83 cores from 40 trees (2–3 cores ind−1) of S. tibet-
ica were collected from living and dead trees in 2017. Fol-
lowing standard dendrochronological procedure (Stokes and 
Smiley 1968), the cores were glued to wooden mounts, air 
dried, and sanded with fine sandpaper until the ring bound-
aries were clearly seen under a microscope. Rings were 
visually cross-dated, and then measured using the Velmex 
measuring system with a precision of 0.001 mm. The cross-
dating and ring-width measurements were checked using 
the COFECHA program (Holmes 1983) for quality control.

The cross-dated ring-width sequences were conserva-
tively detrended using negative exponential or linear curves 
of any slope (Cook and Kairiukstis 1990). The tree-ring indi-
ces were calculated as residuals after performing an adap-
tive power transformation, which stabilizes the variance 
in heteroscedastic raw ring-width series (Cook and Peters 
1997). The tree-ring indices were merged to generate tree-
ring chronologies by ARSTAN program (Cook and Holmes 

1986) and a standard chronology used (Fig. 2). The reliable 
period of the chronology was determined by the expressed 
population signal (EPS) threshold value of 0.85 (Wigley 
et al. 1984), a commonly used criterion to assess whether a 
chronology is statistically reliable for climate reconstruction 
(Cook and Kairiukstis 1990).

Climate data

Monthly climate data spanning 1963–2016 were collected 
from the Jiuzhi meteorological station (31° N, 102°12′ 
E, 2370 m a.s.l.). Climate factors include monthly mean 
(Tmean), maximum (Tmax), minimum (Tmin) temperatures, 
and monthly total precipitation (P) (Fig. 3). In addition, the 
Climatic Research Unit (CRU) TS4.04 temperature dataset 
(Harris et al. 2020) and Hadley Centre sea surface tempera-
ture dataset (HadISST1; Rayner et al. 2003) were adopted 
for spatial correlation analyses.

Statistical analysis

Pearson’s correlation analyses between standard chronology 
and regional climate factors (Tmean, Tmax, Tmin and P) from 

Fig. 2   a Tree-ring width chronology developed from S. tibetica, b Sample depth, c Running EPS, d Running Rbar; vertical dashed line denotes 
EPS > 0.85
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Fig. 3   Monthly mean (Tmean), 
maximum (Tmax), minimum 
(Tmin) temperatures and 
monthly total precipitation (P) 
from the Jiuzhi meteorological 
data (1963–2016)

Fig. 4   Correlations of ring-width chronology of S. tibetica with monthly climate factors (Tmean, Tmax, Tmin and P) from the previous March to 
the current October over 1963–2016; horizontal dashed line denotes the 0.05 significance level
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the previous March to the current October were performed 
over 1963–2016. Based on the results of the climate-growth 
relationship, the dominant limiting factor was selected 
for reconstruction with a simple linear regression method 
(Fritts 1976; Cook and Kairiukstis 1990). The leave-one-
out cross-validation (LOOCV) method was employed to test 
the robustness of the reconstruction model because of the 
short common period between tree-ring width chronology 
and meteorological records (Michaelsen 1987). A positive 
value of the reduction of error (RE) denotes the fidelity of 
reconstruction model.

Multi-taper method (MTM; Mann and Lees 1996) and 
wavelet analysis (Torrence and Compo 1998) were used to 
explore periodic variations of the reconstruction. Spatial 
correlation analyses were performed between the actual and 
reconstructed series and CRU TS4.04 temperature dataset to 
reveal the spatial representativeness of the reconstruction. 

In addition, spatial correlations between the reconstructed 
series and HadSST1 SST dataset were calculated to deter-
mine the impact of global SSTs on climate variability in the 
study area. Spatial correlations were performed using the 
KNMI Climate Explorer (http//www.​knmi.​nl).

Results

Climate‑growth relationships

A ring-width chronology of S. tibetica was developed 
which spans 1299–2016 with a mean segment length of 
379.3 years. The reliable portion of the chronology covers 
1550–2016 based on the EPS threshold of 0.85 (Fig. 2). The 
Rbar of the reliable chronology ranges from 0.20 to 0.40, 
with an average value of 0.27 (Fig. 2). Based on the statistics 

Fig. 5   a Comparison of observed (dash line) and reconstructed (solid line) Tmin 1964–2016, b The reconstructed Tmin and its 21-year low-pass 
filter (thick line) 1550–2016

http://www.knmi.nl
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of EPS and Rbar, the chronology holds strong and stable 
climate signals and is suitable for dendroclimatic studies.

Growth of S. tibetica was positively correlated with 
almost all temperature factors (Fig. 4). It had significant pos-
itive correlations with Tmean and Tmin in the previous March 
to September, previous November, and the current January 
to October. It also had significant positive correlations with 
Tmax in the previous September and in the current Septem-
ber–October. At the same time, growth of S. tibetica showed 
a weak relationship with precipitation, although there was a 
significant positive correlation in the current January. These 

results indicate that Tmean and Tmin were the most important 
limiting factors affecting growth of S. tibetica in the central 
eastern Tibetan Plateau.

Regional Tmin reconstruction

Based on the climate-growth relationship, a linear regres-
sion model between ring-width chronology and warm season 
Tmin was developed for reconstruction (Cook and Kairiuks-
tis 1990). The reconstruction explained 37.8% (36.6% after 
adjusting for the degree of freedom) of the Tmin variance 

Fig. 6   a MTM spectral results 
of the reconstructed Tmin 
1550–2016. The red and green 
lines denote 0.01 and 0.05 
significance level, respectively; 
b Wavelet analysis of the 
reconstructed Tmin 1550–2016. 
The black line indicates the 
cone of influence beyond which 
the edge effect may contort the 
results. Shading denotes the 
0.05 significance level
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from 1964 to 2016. A comparison between the observed 
and reconstructed Tmin showed good consistency during 
1964–2016 (Fig. 5a). The LOOCV generated reconstruction 
had a significant positive correlation with the observed data 
(r = 0.58, p < 0.01). The positive RE value (0.29) and low 
root mean squared error value (0.66) suggest that the recon-
struction model is robust. Therefore, the warm season Tmin 
for the central eastern Tibetan Plateau was reconstructed 
for the past 467 years based on the linear regression model 
(Fig. 5b).

The reconstructed Tmin ranged from 0.13 to 3.21 °C with a 
mean of 1.19 °C and a standardized deviation (σ) of 0.44 °C 
over the past 467 years (Fig. 5b). An extremely high tem-
perature was defined as above 1.63 °C (mean + 1σ) and an 
extremely low temperature as below 0.75 °C (mean − 1σ). 
Therefore, there were 70 extremely high temperature years 
and 69 extremely low temperature years, which accounted for 
14.99% and 14.78% of the past 467 years, respectively. Among 
them, the top ten warmest years were 2015, 2012, 2014, 2016, 
1963, 1949, 2011, 2013, 1953 and 1950, ranging from 2.12 
to 3.21 °C, and the top ten coldest years were 1655, 1876, 
1873, 1768, 1874, 1917, 1928, 1916, 1910 and 1872, ranging 
from 0.13 to 0.33 °C. Based on the 21-year low-pass filter of 
the reconstruction, there were 8 warm periods (1575–1638, 
1663–1675, 1689–1700, 1709–1740, 1777–1795, 1801–1812, 
1827–1833, 1935–2016) and 8 cold periods (1550–1574, 
1639–1662, 1676–1688, 1701–1708, 1741–1776, 1796–1800, 
1813–1826, 1834–1934) in the past 467 years.

Periodic variations of the reconstructed Tmin

The MTM spectral analysis showed that the reconstructed 
Tmin had inter-annual (2.11a, 2.25a, 2.37a, 2.95–3.04a, 
4.68a), multi-decadal (46.04a, 63.68a), centennial (118.29a) 
and bicentennial (203.5a) cycles significant at 0.01 signifi-
cance level (Fig. 6a). In addition, a multi-decadal perio-
dicity (27.27–29.69a) at the 0.05 significance level was 
also found. Wavelet analysis indicated that multi-decadal 
and bicentennial cycles were the main periodicities of the 
Tmin series 1550–2016 (Fig. 6b). The multi-decadal cycles 
were most pronounced during the 1880–2010s, while the 
bicentennial cycles were most pronounced during the 
1700–2010s.

Discussion

Climate‑growth relationships

According to the correlations between ring-width chronol-
ogy and climatic factors, warm season Tmin is the domi-
nant limiting factor on tree growth on the central eastern 
Tibetan Plateau. Numerous studies have revealed that tree 
growth at high-altitude sites reflect minimum temperature 
signals on the eastern Tibetan Plateau (Gou et al. 2007; 
Liang et al. 2009; He et al. 2014; Shi et al. 2015; Li and 
Li 2017; Huang et al. 2019; Li et al. 2021). Tmin could 
influence cell division in the cambium and the enlarge-
ment of tracheids during the growing season (Deslauriers 
et al. 2003). Low air temperatures at night reduce soil tem-
peratures and may constrain root growth and water uptake 

Fig. 7   Spatial correlations of a observed and b reconstructed Tmin with CRU TS4.04 Tmin during 1964–2016
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(Körner 1999). Therefore, Tmin influences tree growth at 
high-altitude sites by affecting root growth and cambium 
activity during the growing season.

Spatial representativeness of the reconstruction

Spatial correlation patterns of the observed and recon-
structed Tmin with the gridded CRU TS4.04 Tmin during 
1964–2016 were highly consistent, suggesting that the 
reconstructed Tmin can represent large-scale tempera-
ture changes on the plateau (Fig. 7). To further validate 
the reliability of our reconstruction, four tree-ring based 
Tmin reconstructions from nearby regions were used for 
comparison: a 564-year previous April to current March 
reconstruction on the east central plateau (Li and Li 2017), 
a 382-year August reconstruction on the southeastern pla-
teau (Liang et al. 2016), a 425-year previous October to 
current April reconstruction on the northeastern plateau 
(Gou et al. 2007), and a 1343-year January–August recon-
struction on the northern plateau (Zhang et al. 2014b). 
Similar cold and warm periods were found in these Tmin 

reconstructions (Fig. 8). For example, two major cold peri-
ods occurred during the 1740–1770s and 1810–1920s. The 
cold period of the 1550–1560s in our study was consist-
ent with the previous October to current April variations 
on the northeastern plateau (Gou et al. 2007), and Janu-
ary–August variations on the northern plateau (Zhang 
et al. 2014b). The cold periods of the 1640–1650s and in 
the 1680s in this study were also found in the Tmin recon-
structions on the east central Tibetan Plateau (Li and Li 
2017) and in the north (Zhang et al. 2014b). However, 
there are some discrepancies between our reconstructions 
and other Tmin reconstructions. For example, the cold 
period in the 1680s was not captured in the August Tmin 
reconstruction on the southeastern plateau (Liang et al. 
2016). The differences among these reconstructions may 
be related to the growth sensitivity of different tree species 
under different micro-environments (Classen et al. 2015). 
Pronounced warming since the 1990s has been observed in 
all the reconstructions. Overall, the above results indicate 
that our reconstructions are highly consistent with nearby 
Tmin reconstructions since the 1550s.

Linkages of the Tmin variability with global sea surface 
temperatures (SSTs)

Based on the results of the multi-taper method (MTM) 
and wavelet analyses, the reconstructed warm season Tmin 
on the eastern plateau has several dominant interannual 
(2.11a, 2.25a, 2.37a, 2.95–3.04a, 4.68a) and multi-dec-
adal (63.68a) cycles, which are consistent with the 2–7a 
El Niño–Southern Oscillation (ENSO) cycles and the 
60–80a Atlantic Multi-decadal Oscillation (AMO) cycles, 

Fig. 8   Comparison of Tmin reconstruction in this study with Tmin 
reconstructions from other studies on the Tibetan Plateau. a the Tmin 
reconstruction in this study, b the previous April to current March 
Tmin reconstruction on the east central plateau (Li and Li 2017), c 
August Tmin reconstruction on the southeastern plateau (Liang et al. 
2016); d previous October to current April Tmin reconstruction on the 
northeastern Tibetan Plateau (Gou et al. 2007), and e January–August 
Tmin reconstruction on the northern plateau (Zhang et al. 2014b). All 
reconstructions have been standardized over their common period for 
direct comparison. In each panel, the grey line represents the raw data 
and the bold line a 21-year low-pass filter. Light blue shading denotes 
major cold periods in our reconstruction

◂

Fig. 9   Spatial correlations of 
the reconstructed Tmin with 
global April–September aver-
aged sea surface temperatures 
over 1964–2016
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respectively. In addition, our reconstructed Tmin series 
exhibits significant positive correlation (r = 0.54, p < 0.01) 
with the AMO index over 1870–2006 (Mann et al. 2008). 
Significant positive correlation (r = 0.21, p < 0.01) was 
also found between our Tmin reconstruction and the Had-
ISST1 Niño3.4 SST index from 1870 to 2006 (Rayner 
et al. 2003). Spatial correlations between the reconstructed 
Tmin and global SSTs during 1964–2016 showed that there 
were significant positive correlations with SSTs in the cen-
tral and northern Pacific Ocean, Indian Ocean, and the 
North Atlantic Ocean, suggesting that ENSO and AMO 
played a key role on temperature changes in the central 
eastern Tibetan Plateau (Fig. 9). Altogether, these results 
suggest that the Tmin variations have a close relationship 
with ENSO and AMO cycles. Previous studies have shown 
that climate change on the eastern Tibetan Plateau has 
been influenced by different large-scale ocean-atmospheric 
circulations, such as the Asian monsoon, and the ENSO 
and AMO cycles (Shao and Fan 1999; Song et al. 2007; 
Duan et al. 2010; Yu et al. 2012; Xiao et al. 2015; Deng 
et al. 2016; Zhu et al. 2016; Deng et al. 2017; Li and Li 
2017; Li et al. 2021), which are consistent with our find-
ings. Nevertheless, further research is needed to reveal the 
dynamic processes that connect ENSO and AMO cycles 
with temperature changes on the central eastern Tibetan 
Plateau.

Conclusion

In this study, a ring-width chronology was developed for 
S. tibetica from the Lianbaoyeze Mountain in the central 
eastern Tibetan Plateau. Climate-tree growth analysis 
showed that growth of S. tibetica was mostly limited by 
the warm season (April–September) minimum tempera-
tures. Based on this relationship, we reconstructed warm 
season Tmin for the past 467 years, which revealed 8 warm 
periods (1575–1638, 1663–1675, 1689–1700, 1709–1740, 
1777–1795, 1801–1812, 1827–1833, 1935–2016) and 
8 cold periods (1550–1574, 1639–1662, 1676–1688, 
1701–1708, 1741–1776, 1796–1800, 1813–1826, 
1834–1934). Spatial correlations and comparisons with 
other Tmin reconstructions on the plateau confirmed that 
our reconstruction represented large-scale Tmin varia-
tions on the Tibetan Plateau. Further analyses indicated 
that temperature changes in central eastern plateau may 
be affected by large-scale ocean-atmospheric circulations 
such as ENSO and AMO. Future research should develop 
a larger tree-ring network with longer chronologies for the 
central eastern Tibetan Plateau to help better understand 
long-term associations of regional climates with large-
scale ocean-atmospheric circulations.
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